Impact of mixing and chemical change on ozone-tracer relations in the polar vortex

نویسنده

  • R. Müller
چکیده

Tracer-tracer relations have been used for a long time to separate physico-chemical change from change caused by transport processes. In particular, for more than a decade, ozone-tracer relations have been used to quantify chemical ozone loss in the polar vortex. The application of ozone-tracer relations for quantifying ozone loss relies on two hypotheses: that a compact ozone-tracer relation is established in the ‘early’ polar vortex and that any change of the ozone-tracer relation in the vortex over the course of winter is caused predominantly by chemical ozone loss. Here, we revisit this issue by analysing various sets of measurements and the results from several models. We find that mixing across the polar vortex edge impacts ozone-tracer relations in a way that may solely lead to an ‘underestimation’ of chemical ozone loss and not to an overestimation. Further, differential descent in the vortex and internal mixing has only a negligible impact on ozone loss estimates. Moreover, the representation of mixing in three-dimensional atmospheric models can have a substantial impact on the development of tracer relations in the model. Rather compact ozonetracer relations develop – in agreement with observations – in the vortex of a Lagrangian model (CLaMS) where mixing is anisotropic and driven by the deformation of the flow. We conclude that, if a reliable ‘early vortex’ reference can be obtained and if vortex measurements are separated from mid-latitude measurements, ozone-tracer relations constitute a reliable tool for the quantitative determination of chemical ozone loss in the polar vortex.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ozone/tracer relations in the polar vortex

Impact of mixing and chemical change on ozone-tracer relations in the polar vortex R. Müller, S. Tilmes, P. Konopka, J.-U. Grooß, and H.-J. Jost ICG I, Forschungszentrum Jülich, 52425 Jülich, Germany Bay Area Envrionmental Research Institute, Sonoma, CA, USA now at: ACD, NCAR, Boulder, CO, USA Received: 8 June 2005 – Accepted: 6 July 2005 – Published: 10 August 2005 Correspondence to: R. Müller...

متن کامل

Dynamics and chemistry of vortex remnants in late Arctic spring 1997 and 2000: Simulations with the Chemical Lagrangian Model of the Stratosphere (CLaMS)

High-resolution simulations of the chemical composition of the Arctic stratosphere during late spring 1997 and 2000 were performed with the Chemical Lagrangian Model of the Stratosphere (CLaMS). The simulations were performed for the entire northern hemisphere on two isentropic levels 450 K (≈18 km) and 585 K (≈24 km). The spatial distribution and the lifetime of the vortex remnants formed afte...

متن کامل

The impact of mid-latitude intrusions into the polar vortex on ozone loss estimates

Current stratospheric chemical model simulations underestimate substantially the large ozone loss rates that are derived for the Arctic from ozone sondes for January of some years. Until now, no explanation for this discrepancy has been found. Here, we examine the influence of intrusions of mid-latitude air into the polar vortex on these ozone loss estimates. This study focuses on the winter 19...

متن کامل

A revised linear ozone photochemistry parameterization for use in transport and general circulation models: Multi-annual simulations

This article describes the validation of a linear parameterization of the ozone photochemistry for use in upper tropospheric and stratospheric studies. The present work extends a previously developed scheme by improving the 2-D model used to derive the coefficients of the parameterization. The chemical reaction rates are updated from a compilation that includes recent laboratory work. Furthermo...

متن کامل

The impact of transport across the polar vortex edge on Match ozone loss estimates

The Match method for the quantification of polar chemical ozone loss is investigated mainly with respect to the impact of the transport of air masses across the vortex edge. For the winter 2002/03, we show that significant transport across the vortex edge occurred and was simulated by the Chemical Lagrangian Model of the Stratosphere. In-situ observations of inert tracers and ozone from HAGAR o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005